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Wavelet Approximation of Periodic Functions
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We investigate expansions of periodic functions with respect to wavelet bases.
Direct and inverse theorems for wavelet approximation in C and Lp norms are
proved. For the functions possessing local regularity we study the rate of pointwise
convergence of wavelet Fourier series. We also define and investigate the ``discreet
wavelet Fourier transform'' (DWFT) for periodic wavelets generated by a com-
pactly supported scaling function. The DWFT has one important advantage for
numerical problems compared with the corresponding wavelet Fourier coefficients:
while fast computational algorithms for wavelet Fourier coefficients are recursive,
DWFTs can be computed by explicit formulas without any recursion and the
computation is fast enough. � 2000 Academic Press

1. INTRODUCTION

In the past 10 years growing interest to wavelets can be explained mainly
by their applications. However, it has turned out that some approximating
properties of wavelet bases play an important role in analysis. For instance,
there exist wavelets that constitute an unconditional basis in Lp(R), 1<p<�
(see, e.g., [3, Chap. 9]). The Meyer wavelets constitute an optimal basis in
the space of continuous periodic functions [13, 14]. Certain functional
classes can be described in terms of wavelet Fourier coefficients (see, e.g.,
[6, 12]). Connections between multiresolution approximation and structure
properties of functions on Rd were studied in many publications (see, e.g.,
[5�9]). In the present paper we study wavelet bases as a tool for approxima-
tion of periodic functions.

We now introduce the necessary notation and definitions. Let T denote
the unit circle. If f # L(T), then f� (k)=�T f (t) e&2?ikt dt is k th Fourier coef-
ficient of f (with respect to the trigonometric system). If g # L(R) _ L2(R),
then ĝ denotes the Fourier transform of g.
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Let . be a function in L2(R) such that .̂ is bounded, limt � 0 .̂(t)=
.̂(0){0, for almost all x # R

:
l # Z

|.̂(x+l)|2=1, (1)

and

.̂(x)=m0(x�2) .̂(x�2), (2)

where m0 # L2(T). It is known (see, e.g., [3, Chap. 5]) that such a . is a
scaling function of a multiresolution analysis in L2(R) and there exists a
function � # L2(R) (wavelet function) such that its normalized integer shifts
and scales 2 j�2�(2 j } +n), j, n # Z, constitute an orthonormal basis in L2(R).
The function � is defined by

�� (x)=m0((x+1)�2) .̂(x�2) e?ix. (3)

If both the functions ., � have sufficient decay, say

max( |.(x)|, |�(x)| )�
C

1+|x|1+= , =>0, (4)

then the functions

8jn(x)=2 j�2 :
l # Z

.(2 jx+2 jl+n),
(5)

9jn(x)=2 j�2 :
l # Z

�(2 jx+2 jl+n)

are in L2(T) and the systems [8jn]2 j&1
n=0 , [9jn]2 j&1

n=0 are orthonormal for
each j=0, 1, 2, ... . Moreover, the spaces

Vj=span[8jn , n=0, ..., 2 j&1],
(6)

Wj=span[9jn , n=0, ..., 2 j&1]

satisfy the properties

V0=[const], Vj /Vj+1 , Vj+1=Vj �Wj , .
�

j=0

V j =L2(T)

for all j=0, 1, ... . This implies that L2(T)=V0 �W0 �W1 � } } } . We shall
call the collection [Vj]�

j=0 a periodic multiresolution analysis (briefly PMRA)
generated by .. (Later, in Section 4, we shall introduce a wider class of
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PMRA.) Thus, the functions 800 , 9jn , j=0, 1, ..., n=1, ..., 2 j&1 (periodic
wavelets) constitute an orthonormal basis in L2(T). Since under the assump-
tion (4) these functions are also bounded, we can consider the wavelet Fourier
series

( f, 800) 800+ :
�

j=0

:
2 j&1

n=0

( f, 9jn) 9 jn (7)

for each f # L(T). To transform the double sum in (7) to a single one, we
redenote wavelets: w0=800 , w2 j+L=9jL , 0�L<2 j&1. Now (7) can be
written as

:
�

k=0

( f, wk) wk . (8)

Let sN( f ) denote the N th partial sum of (8). Since s2 j&1( f ) is an
orthogonal projection of f onto Vj , and [8jn]2 j&1

n=0 is an orthonormal basis
in Vj ,

s2 j&1( f )= :
2 j

n=0

( f, 8jn) 8jn , (9)

and also each sN( f ), N=2 j+L, 0�L<2 j&1 can be represented in the
form

sN( f )= :
2 j&1

n=0

( f, 8 jn) 8jn+ :
L

n=0

( f, 9jn) 9jn . (10)

Set f =w0 #1 in (8). Since ( f, wk) =$0k , we have sN( f )=1 for all N,
j=0, 1, ... . Hence

|
1

0
:
N

k=0

wk(x) wk(t) dt#1, |
1

0
:

2 j&1

k=0

8jk(x) 8jk(t) dt#1. (11)

For a function f # Lp(T) ( f # C(T) for p=�), we introduce the follow-
ing characteristics: the rth modulus of smoothness |r( f, h)p=sup |t|�h &2r

t f &p

and the error of best wavelet approximation of order N, EN ( f )p =
inf & f&T& p , where infinimum is taken over all ``wavelet polynomials''
T=�N

k=0 :kwk .
Throughout the paper, C denotes a constant depending at most on a fixed

PMRA and C(a, ..., b) denotes a constant depending at most on a, ..., b and
the PMRA.
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2. DIRECT AND INVERSE APPROXIMATION THEOREMS

Theorem 2.1. Let . satisfy (4), � # C (m)(R) with �(l) bounded for
l�m, |�(x)|�C�(1+|x|n), n>m+1, p # [1, �]. Then

EN( f )p�& f&sN( f )&p�C( p, n, m) |r \ f,
1
N+p

, N=1, 2, ... . (12)

for all f # Lp(T) ( f # C(T) for p=�) and for all positive integers r,
r�m+1, r<n&1.

This theorem is a wavelet analog of the classical Jackson's theorem for
the trigonometric approximation. However, in contrast to the trigonometric
case, not only the errors of best approximation but also the deviations of func-
tions from partial sums of their wavelet Fourier series are majorized by moduli
of smoothness.

Theorem 2.1 is known [13, 14] for Meyer wavelets. In this case & f&sN( f )&
is majorized by the error of trigonometric best approximation moreover, it
is majorized by the modulus of smoothness of arbitrary order. The proof
of this result was based on very special properties of Meyer wavelets.

Before giving the proof of Theorem 2.1 we shall present three simple
auxiliary statements.

Lemma 2.2. Let g, h be functions defined on R, max( | g(x)|, |h(x)| )�
C�(1+|x|1+=), =>0, and let f # L(T), j=0, 1, ..., L=0, ..., 2 j&1. Then

|
1

0
f (t) :

L

k=0

:
l$ # Z

g(2 jx+2 jl$+k) :
l # Z

h(2 j t+2 jl+k) dt

=|
�

&�
f (t) :

& # Z( j, L)

g(2 jx+&) h(2 jt+&) dt, (13)

where Z( j, L)=[& # Z : &=2 jl+k, l # Z, k=0, ..., L].

The proof of this lemma is trivial.

Lemma 2.3. Let + be a bounded, decreasing, and integrable function on
[0, �). Then for all x, y # R

:
k # Z

+( |x+k| ) +( | y+k| )�C+ \ |x& y|
4 + ,

where C is a constant depending only on +.

The proof of this lemma is simple, a little bit more general statements are
presented in [8, 16].
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Corollary 2.4. If g, h satisfy the hypothesis of Lemma 2.2, then

2 j |
1

0 } :
L

k=0

:
l$ # Z

g(2 jx+2 jl$+k) :
l # Z

h(2 j t+2 jl+k) } dt�C, (14)

where C is a constant depending only on the functions g, h, and =.

To prove (14), we should apply Lemma 2.2 for f#1 and Lemma 2.3 for
+(x)=1�(1+|x|1+=).

Proof of Theorem 2.1. First we assume that f is a trigonometric poly-
nomial and prove the following inequality:

& f&sN( f )& p�C( p, r, n)
& f (r)& p

N r . (15)

Let 2 j�N�2 j+1, since limk � � & f&s2 k&1( f )&p=0 (this fact is well
known; it also can be easily deduced from (9) and (14)),

f &sN( f )=(s2 j&1( f )&sN( f ))+ :
�

i= j

(s2 i+1&1( f )&s2 i&1( f )). (16)

Hence, to prove (15), it suffices to check that

&s2 j+L( f )&s2 j&1( f )& p�C ( p, r, n) 2& jr & f (r)& p (17)

for all j=0, 1, ..., L=0, ..., 2 j&1. Using Lemma 2.2, the Taylor formula

f (t)= :
r&1

k=0

f (k)(x)
k!

(t&x)k+
1

(r&1)! |
t

x
f (r)({)(t&{)r&1 d{,

and the equalities

|
�

&�
xl�(x) dx=0, l=0, ..., m (18)

(see, e.g., [3, Chap. 5]), we have

s2 j+L( f, x)&s2 j&1( f, x)

=2 j |
1

0
f (t) :

L

k=0

:
l$ # Z

�(2 jx+2 jl$+k) :
l # Z

�(2 j t+2 jl+k) dt

=2 j |
�

&�
f (t) :

& # Z( j, L)

�(2 jx+&) �(2 jt+&) dt

=
2 j

(r&1)! |
�

&�
|

t

x
f (r)({)(t&{)r&1 d{ :

& # Z( j, L)

�(2 jx+&) �(2 j t+&) dt.
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It is possible to change the order of summation and integration, by
Lebesgue's theorem. Set +(u)=1�(1+|u|n). By Lemma 2.3,

} :
& # Z( j, L)

�(u+&) �(v+&) dt }�C(n) +(u&v)

for all u, v # R. Hence

|s2 j+L( f, x)&s2 j&1( f, x)|

�C(n) 2 j |
�

&� }|
t

x
f (r)({)(t&{)r&1 d{ } +(2 j (t&x)) dt

=C(n) 2 j |
�

&� }|
x+t

x
| f (r)({)| |t+x&{| r&1 d{} +(2 j t) dt. (19)

Applying Jensen's inequality for p<�, we obtain from (19)

&s2 j+L( f )&s2 j ( f )& p

�2 j |
�

&�
dt +(2 j t) \|

1

0 }|
x+t

x
| f (r)({)| |x+t&{| r&1 d{ }

p

dx+
1�p

�C( p, r, n) 2 j |
�

&�
dt +(2 jt)

_\|
1

0
|t| r( p&1) } |

x+t

x
| f (r)({)| p |x+t&{| r&1 d{ } dx+

1�p

. (20)

If |t|�1, then taking into account the periodicity of f (r), we have

}|
x+t

x
| f (r)({)| p |x+t&{| r&1 d{}�|t| r&1 }|

x+t

x
| f (r)| p }�2 |t| r & f (r)& p

p .

This implies that

|
1

0
dx }|

x+t

x
| f (r)({)| p |x+t&{| r&1 d{ }�C(r) |t| r & f (r)& p

p . (21)

If 0�t<1, then

|
1

0
dx |

x+t

x
| f (r)({)| p |x+t&{| r&1 d{

�|
t+1

0
| f (r)({)| p d{ |

{

{&t
(t+x&{)r&1 dx�

2
r

& f (r)& p
p tr.
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Thus, (21) holds also in this case. Similarly, if &1<t<0, then

}|
x+t

x
| f (r)({)| p |x+t&{| r&1 d{ }

�|
1

t
| f (r)({)| p d{ |

{&t

{
({&x&t)r&1 dx�

2
r

& f (r)& p
p |t| r.

Again this implies (21).
Substituting (21) into (20) yields

&s2 j+L( f )&s2 j&1( f )& p�C( p, r, n) & f (r)& p 2 j |
�

&�
|t| r +(2 j t) dt

for p<�. For p=�, the inequality

&s2 j+L( f )&s2 j&1( f )&��C(r, n) & f (r)&� 2 j |
�

&�
|t| r +(2 j t) dt.

evidently follows from (19). These relations imply (15) immediately, whenever
we change variable in the integrals and take into account that the functions +,
|t| r +(t) are summable on R. Hence, (15) holds for all trigonometric polyno-
mials. Thus (15) implies (12) for each trigonometric polynomial f, due to
the following theorem of Zhuk [19].

Theorem 2.5. Let 8 be a non-negative semi-additive functional on Lp(T)
(C(T)), Yr, n=sup(8(g)�&g(r)& p), where the supremum is taken over all
trigonometric polynomials g of order n, Yr=supk Yr, k . Then for all positive
integers N, r and all trigonometric polynomials f

8( f )�Ar(1+Y0+N rYrN) |r \ f,
1
N+p

,

where Ar is a constant depending only on r.

To prove Theorem 2.1 for an arbitrary function f # Lp(T) ( f # C(T) for
p=�) it remains to approximate f in the norm by a trigonometric polyno-
mial f1 , to apply (2.1) to f1 , and to take into account that &sN( f )& p�
C( p) & f & p , |r( f, 1

N)�C(r) & f & p .

Remark. In the hypotheses of Theorem 2.1 the smoothness of � can be
replaced by (18).

Theorem 2.6. Let . # C (m)(R) satisfy (4) and |.(m)(x)|�C�(1+|x|1+=),
=>0, p # [1, �]. Then

& f (m)& p�C( p, m) 2mj & f &p , (22)

for all f # Vj , j=0, 1, ... .
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This theorem is a wavelet analog of Bernstein's inequality for trigonometric
polynomials.

Proof. Let f # Vj . Since f =s2 j&1( f ), by (9), we have

f (x)=2 j |
1

0
f (t) :

2 j&1

k=0

:
l$ # Z

.(2 jt+2 jl$+k) :
l # Z

.(2 jx+2 jl+k) dt. (23)

Hence

f (m)(x)=2 j(m+1) |
1

0
f (t) Kj (x, t) dt, (24)

where

Kj (x, t)= :
2 j&1

k=0

:
l$ # Z

.(m)(2 jx+2 jl$+k) :
l # Z

.(2 j t+2 jl+k).

For p=� (22) follows from this immediately, due to Corollary 2.4 with
g=., h=.(m). Consider p<�. By Jensen's inequality, (24) implies

& f (m)& p
p�2 j(m+1) |

1

0
dx \|

1

0
|Kj (x, t)| dt+

p&1

|
1

0
| f (t)| p |Kj (x, t)| dt.

Finally, applying Corollary 2.4, we obtain (22). K

Theorem 2.7. Let . satisfy the hypothesis of Theorem 2.6, p # [1, �].
Then

|m( f, h)p�C( p, m) hm :
0�l�h&1

(l+1)m&1 El( f )p

�C( p, m) hm :
0�l�h&1

(l+1)m&1 & f&sl( f )& p

for all h>0 and f # Lp(T) ( f # C(T) for p=�). Moreover, if

:
�

l=1

lm&1 & f&sl( f )& p<�,

then the function f has a derivative of order m almost everywhere (at each
point in the case p=�), f (m) # Lp(T) ( f (m) # C(T) for p=�), and

& f (m)&s (m)
n ( f )& p�C( p, m) :

�

l=[n�2]

(l+1)m&1 & f&sl( f )& p .
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To prove this theorem we should repeat the proof of the similar statement
for trigonometric polynomials (see, e.g., [11]) using Theorem 2.6 instead of
the classical Bernstein's inequality.

The hypotheses of both Theorem 2.1 and Theorem 2.7 hold for the wavelets
generated by a smooth compactly supported scaling function. Such wave-
lets were constructed by Daubechies (see [3, Chap. 6]). For these wavelets
Theorems 2.1 and 2.7 give the following statement.

Corollary 2.8. Let ., � # C (m)(R) be compactly supported with �(l)

bounded for l�m, and let r�m&1 be a non-negative integer, : # [0, 1),
:2+r2>0, 1�p��, f # Lp(T), ( f # C(T) for p=�). Then the relations
EN( f )p=O(1�N r+:), & f&sN( f )& p=O(1�N r+:), |r+1( f, h)p=O(hr+:)
are equivalent.

Corollary 2.9. Let numbers r, : and functions ., � satisfy the condi-
tions of Corollary 2.8 and let f # C(T). The relation

|r+1( f, h)�=O(hr+:) (25)

holds if and only if

( f, wN) =O(2& j(r+:+1�2)) (26)

for all N=2 j+n, n=0, ..., 2 j&1.

Proof. Due to Theorem 2.1 and the evident relation &wN&1=O(2& j�2),
N=2 j+n, n=0, ..., 2 j&1, we have (25) O (26). It follows from Corollary
2.8 and (16) that (25) is equivalent to &s2 j+l&s2 j&1&�=O(2& j(r+:)),
l=0, ..., 2 j&1. If (26) holds, then &s2 j+l&s2 j&1&�=O(2& j(r+:+1�2)_
&�l

k=0 |wk |&�). To prove (26) O (25) it remains to note that �l
k=0 |wk |=

O(2 j�2) because of the compactness of the support of �. K

Corollary 2.10. Let a number r and functions ., � satisfy the condi-
tions of Corollary 2.8, 1�p��, 0<:<r, 0<q<�. A function f # Lp(T)
( f # C(T) for p=�) belongs to the Besov space B:

q(Lp) if and only if
(��

n=1
1
n (n: & f&sn&1( f )&p)q)1�q<�.

This statement follows immediately from Theorems 2.1, 2.6, due to
Theorem 9.1 from [4].

3. LOCAL CONVERGENCE

In this section we study wavelet approximation of functions possessing
local regularity.
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Let x0 # R, :>0. We say that a function f # L(T) belongs to L:(x0) if
there exists a number s such that

1
h |

|x&x0 |�h
| f (x)&s| dx=O(h:), as h � 0. (27)

Theorem 3.1. Let f # L:(x0), :>0. If |.(x)|�C�(1+|x|m), m>1, then

|s2 j&1( f, x0)&s|=O(2& j min[:, m&1]), j � �, (28)

for :{m&1;

|s2 j&1( f, x0)&s|=O( j2& j:), j � �, (29)

for :=m&1. If, moreover, |�(x)|�C�(1+|x|n), n>1, then

|sN( f, x0)&s|=O(N&min[:, n&1]), N � �, (30)

for :{n&1;

|sN( f, x0)&s|=O(N &: log N), N � �, (31)

for :=n&1.

Proof. It follows from (9), (11) that

s2 j&1( f, x0)&s=|
1

0
( f (t)&s) :

2 j&1

n=0

8 jn(t) 8jn(x0) dt.

Hence, by Lemmas 2.2, 2.3,

|s2 j&1( f, x0)&s|�2 j |
�

&�
| f (t)&s| +(2 j (t&x0)) dt, (32)

where +(u)=C�(1+|u|m). Let j0 be a positive integer such that

1
h |

|x&x0 |�h
| f (x)&s| dx�Ch:, 0<h�2& j0. (33)

Due to the monotonicity of +, for all j� j0

|s2 j&1( f, x0)&s|

�2 j+1 \+(0) |
|t&x0 |<2&j

| f (t)&s| dt+ :
�

k=&j

+(2 j+k)

_|
2k�|t&x0 |�2k+1

| f (t)&s| dt+
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�2 j+1+(0) |
|t&x0 |<2&j

| f (t)&s| dt

+ :
&j0

k=&j+1

2 j+1+(2 j+k) |
|t&x0 |<2k

| f (t)&s| dt

+ :
�

k=&j0+1

2 j+1+(2 j+k) |
|t&x0 |<2 k

| f (t)&s| dt=70+71+72 .

(34)

Using (3.1) we have

70=O(2& j:)=O(2& j min[:, m&1]),
(35)

71=O(1) 2 j :
&j0

k=&j

2k(:+1)2&( j+k)m=O \2 j(1&m) :
&j0

k=& j+1

2k(:+1&m)+ .

This gives

71=O(2& j min[:, m&1]), if :{m&1, (36)

71=O( j2& j:), if :=m&1. (37)

To estimate 72 , we note that the function I(h)= 1
h � |t&x0 |<h | f (t)&s| dt is

bounded on (0, �). This implies that

72=O(1) :
�

k=&j0+1

2 j+k+(2 j+k)=O(1) :
�

k=&j0+1

2( j+k)(1&m)

=O(1) 2 j(1&m) :
�

k=&j0+1

2k(1&m)=O(2& j(m&1))=O(2& j min[:, m&1]).

(38)

Combining (35), (36), (37), (38) with (34), we obtain (28), (29). In parti-
cular, (28) or (29) implies that the sequence [s2 j&1( f, x0)]�

j=1 converges
to s. From this it follows that (16) holds at the point x0 . Hence to prove
(30), (31) it suffices to establish the relations

s2 j+L( f, x0)&s2 j&1( f, x0)=O(2& j min[:, m&1]), if :{m&1, (39)

s2 j+L( f, x0)&s2 j&1( f, x0)=O( j2& j:), if :=m&1, (40)

for all j=0, 1, ..., L=0, ..., 2 j&1.
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Since, due to (11), the left-hand sides of these equalities can be represented
as

|
1

0
( f (t)&s) :

L

k=0

9 jk(t) 9 jk(x0) dt,

(39), (40) can be proved similarly to (28), (29). K

Next we shall show that estimates (28), (29), (30), (31) cannot be improved
in general. Consider the special case :<n&1, :<m&1 which holds, for
example, if the functions ., � are compactly supported. In this case (28)
and (30) look like

|sN( f, x0)&s|=O(N &:), N � �. (41)

The following example illustrates that (41) is sharp. Consider the Haar
system that is a wavelet system with

1, if 0�x<1�2,

.(x)={1,
0,

if 0�x<1,
otherwise,

�(x)={&1, if 1�2�x<1, (42)

0, otherwise.

Set f (t)=t: on [0, $], f (x)=0 on [&$, 0]. It is clear that f # L(T) and
satisfies (27) with s=0, x0=0. Consider the (2 j&1)th partial sums:

s2 j&1( f, x)=2 j |
1

0
ff (t) :

2 j&1

k=0

:
l # Z

.(2 jx+2 jl+k) :
l$ # Z

.(2 j t+2 jl$+k) dt.

If x # [0, 2& j), then �l # Z .(2 jx+2 jl)=1 and �l # Z .(2 jx+2 jl+k)=0
for k=1, ..., 2 j&1. This implies that for all j large enough

|s2 j&1( f, 0)|=2 j |
2&j

0
f (t) dt=2 j |

2&j

0
t: dt=

1
:

2& j:.

Thus, the right-hand side of (41) can not be replaced by o(N&:).
Now we consider the case n&1<:. In this case

|sN( f, x0)&s|=O(N (1&n)), N � �.

In particular, the following ``localization principle'' holds: if f#0 on a
neighborhood of a point x0 , then (43) is valid. There exists an example
[17] illustrating that (43) is sharp.
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The following example illustrates that the estimates (29), (31) are sharp.
Define . by

1, if |u|<1�3,

.̂(u)={} sin
3?u

2 } , if 1�3<|u|<2�3

0, if |u|>2�3.

This is a scaling function of Meyer non-smooth wavelets (see, e.g.,
[3, Chap. 5]), It is not difficult to compute . explicitly:

.(u)=
sin 2?u�3

2?u
+

6 cos 4?u�3+8u sin 2?u�3
?(9&16u2)

.

It is clear that .(u) decays as u&2. We can also compute �, due to the
equality �� (u)=ei?u(.̂(u+1)+.̂(u&1)) .̂(u�2) (see [3, Chap. 5]), and
verify that �(u)=O(u&2). Thus, . generates a PMRA and the functions .,
� satisfy the hypothesis of Theorem 3.1 with n=m=2. We shall prove that
for any #(u)=o(u log u), u � +0 there exists a 1-periodic function f # L(T)
satisfying (27) with x0=0, s=0, :=1 such that lim sup j � � |#&1(2& j)_
s2 j&1( f, 0)|=�. Due to the Banach�Steinhaus theorem, it suffices to find
a sequence of positive integers [Mj] j , Mj � � and a sequence of functions
[ fj] j , fj # L(T), such that

sup
h>0

1
h2 |

h

&h
| fj |�C, (44)

where C is an absolute constant, and |#&1(2& j) s2 j&1( fj , 0)|�Mj for some
subsequence of positive integers j. Consider a sequence of positive integers
Nj=2 j&1 with even j. Using the Poisson summation formula, we have

:
l # Z

.(2 j (x+l)+k)= :
n # Z

.̂(2& jn) e2?inxe2?ink2&j
.

Then taking into account that �2 j&1
k=0 e2?ikm2&j

=0 for all m{2 jl, l # Z, and
supp .̂ & supp .̂( } +k)=0 for k # Z, |k|�2, we obtain

sNj
( f, x)=|

1

0
f (t) :

n # Z

.̂(2& jn) e2?in(t&x)(.̂(2& jn)+.̂(2& jn&1) e2?i2 j x

+.̂(2& jn+1) e&2?i2 jx) dt

for all f # L(T). This implies that

sNj
( f, 0)= :

n # Z

*(2& jn) f� (n),
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where *(u)=.̂2(u)+.̂(u)(.̂(u&1)+.̂(u+1)). It is not difficult to verify
that *� (u)=:(u)+;(u), where

:(u)=
9(sin 2?u�3+sin 4?u�3)

2?u(9&4u2)
,

;(u)=
3(cos 2?u�3+cos 4?u�3)

?(9&4u2)
.

Set _N( f, x)=�n # Z *( n
N) f� (n) e2?inx. This is a linear summation method of

Fourier series with summable *� . It is well known that _N( f ) can be
represented in the following form:

_N( f, x)=|
�

&�
f \x+

t
N+ *� (t) dt.

Since _2 j ( f, 0)=sNj
( f, 0), we obtain

sNj
( f, 0)=|

�

&�
f (2& j t) *� (t) dt. (45)

Set |=[kr=2r+ j�2, ..., 2r+ j�2+22r&1, r=1, ..., j
2&3], ek=[3k, 3k+1�2],

k # Z, 0=�k # | ek . It is not difficult to see that 0/[0, 2 j&1] and
ek & el=< for all k, l # |, k{l, whenever j�4. Introduce even 1-periodic
functions fj defined on [0, 1�2] by

fj (x)={&1,
0,

if 2 jx # 0,
if 2 jx # [0, 2 j&1]"0.

Since fj #0 on [0, 21& j�2], (44), evidently, holds for all h�21& j�2. If 2l& j�2

�h<2l+1& j�2, 1�l� j
2&4, we have

|
h

0
| fj |=|

0 & [0, h]
| fj |� :

l

r=1

:
22r&1+2r+j�2

kr=2 r+j�2

2& j&1

�2& j&1 :
l

r=1

22r=O(22l& j)=O(h2).

It is clear that

|
�

&�
f j (2

& j t) *� (t) dt=|
�

&�
f j (2& j t) ;(t) dt+O(2& j)

=&
3

2? |
�

0
fj (2& jt) P(t)

dt
t2+O(2& j),
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where P(t)=cos(2?t�3)+cos(4?t�3). Further,

&|
�

0
f j (2

& j t) P(t)
dt
t2=|

0
P(t)

dt
t2+O(2& j).

Since P(t) is 3-periodic and non-negative on 0, for all even j>6

|
0

P(t)
dt
t2= :

j�2&3

r=1

:
2 r+j�2+22r&1

kr=2 r+j�2
|

ekr

P(t)
dt
t2 � :

j�2&3

r=1
|

2 r+ j�2+22r&1+1

2 r+j�2+1

dt
9t2 |

e0

P

�
1
9

:
j�2&3

r=1

22r&1

(2r+ j�2+1)(22r&1+2r+ j�2+1) |e0

P

�2& j&7 \ j
2

&3+ |e0

P�Mj2& j,

where M is an absolute positive constant. Finally using (45), we obtain

|#&1(1�N j) sNj
( f j , 0)|�M

log Nj �Nj

|#(1�N j)|
=Mj ww�

j � �
�.

Next we consider the following substitute for (27): a function f # L(T) is
said to belong to Lr, :(x0), :>0, x0 # R, if there exists a polynomial P of
order r, 0�r�:, such that

1
h |

|x&x0 |�h
| f (x)&P(x&x0)| dx=O(h:).

The class Lr, :(x0) was introduced by Calderon and Zygmund [1].

Theorem 3.2. Let . satisfy (4), � # C (m)(R) with �(l) bounded for
l�m, |�(x)|�C�(1+|x|n), n>1. If f # Lr, :(x0), :>0, r�m, r<n&1,
then

|sN( f, x0)&P(0)|=O(N&min[:, n&1]), N � �, (46)

for :{n&1, and

|sN( f, x0)&P(0)|=O(N&: log N), N � �, (47)

for :=n&1.

Proof. Let :{n&1. It is clear that x0 is a Lebesgue point of f. Then
sN( f, x0) converges to P(0) (see, e.g., [15]). On the basis of this and (16),
it suffices to prove that

s2 j+L( f, x0)&s2 j&1( f, x0)=O(2& j min[:, n&1]) (48)
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for all j=0, 1, ..., L=0, 1 } } } 2 j&1. Using (18) and Lemmas 2.2 and 2.3, we
have

|s2 j+L( f, x0)&s2 j&1( f, x0)|

�2 j |
�

&�
| f (x)&P(x&x0)| :

& # Z

|�(2 jx+&)| |�(2 jx0+&)| dx

�C(n) 2 j |
�

&�
| f (x)&P(x&x0)| +(2 j (x&x0)) dx, (49)

where +(u)=C�(1+|u|n). Let j0 be a positive integer such that

1
h |

|x&x0 |�h
| f (x)&P(x&x0)| dx�Ch:, 0<h�2 j0.

The monotonicity of + implies that for all j� j0

|s2 j+L( f, x0)&s2 j&1( f, x0)|

�2 j+1+(0) |
|x&x0 | �2&j

| f (x)&P(x&x0)| dt

+ :
&j0

k=&j+1

2 j+1+(2 j+k) |
|x&x0 |�2k

| f (x)&P(x&x0)| dt

+ :
�

k=&j0+1

2 j+1+(2 j+k) |
|x&x0 |�2k

| f (x)&P(x&x0)| dt

=70+71+72 . (50)

The sums 70 , 71 can be estimated as well as the similar ones in (34). Thus,
we obtain

70+71=O(2& j min[:, n&1]). (51)

Using the evident relations

|
|x&x0 |�h

| f (x)&P(x&x0)| dt=O(h), 0<h�1,

|
|x&x0 |�h

| f (x)&P(x&x0)| dt=O(hr+1), h�1,
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we have

72=O(1) \ :
&1

k=&j0+1

2 j+k+(2 j+k)+ :
�

k=0

2 j+k(r+1)+(2 j+k)+
+O(1) \2 j(1&n) :

�

k=& jo+1

2k(1&n)+2 j(1&n) :
�

k=0

2k(r&n+1)+
=O(2& j min[:, n&1]).

This together with relations (49)�(51) implies (48). The case :=n&1 is
similar. K

Remark. In the hypotheses of Theorem 3.2 the smoothness of � can be
replaced by (18).

4. EXPANSIONS WITH RESPECT TO BI-ORTHOGONAL
WAVELET SYSTEMS

In this section we extend Theorem 3.1 to a wide class of wavelets (not
necessary generated by a non-periodic scaling function). We shall use the
definition of PMRA and general approach to periodic wavelets given on
the basis of this definition in [15]. To be more precise, we will briefly
review the basic details of this approach.

Let us introduce more notations. If f is a periodic function, then Sj f =
f ( } +2& j). If f # L(T), then | j

n f is a 1-periodic function defined by its
Fourier series

:
l # Z

f� (2 jl+n) e2?i(2 j l+n)x.

Definition 4.1. Let X=Lp(T), 1�p<� or X=C(T), Vj /X,
j=0, 1, ... . The collection [Vj]�

j=0 is called a PMRA in X, if the following
properties hold:

MR1. Vj /Vj+1 , j=0, 1, 2, ...;

MR2. ��
j=0 V j is dense in X ;

MR3a. dim Vj=2 j, j=0, 1, 2, ...;

MR3b. dim [ f # Vj : Sj f =*f ]�1 for all * # R, j=0, 1, 2, ...;

MR4a. if f # Vj , then f (2 } ) # Vj+1 , j=0, 1, 2, ...;

MR4b. if f # Vj+1 , then f ( } �2)+ f (( } +1)�2) # Vj , j=0, 1, 2, ...;

MR4c. if f # Vj , then Sj f # Vj , j=0, 1, 2, ... .
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Let [Vj]�
j=0 be a PMRA. A sequence of functions [Gj]�

j=0 is said to be
a scaling sequence (for this PMRA), if Gj # Vj and the functions S k

j Gj ,
k=0, ..., 2 j&1, constitute a basis of the space Vj for all j=0, 1, ... .

Theorem 4.2. Let X=Lp(T), 1�p<� or X=C(T). A sequence of
functions [Gj]�

j=0 /X is a scaling sequence for some PMRA if and only if
the following properties hold :

G1. G� 0(k)=0 for all k{0;

G2. for all j=0, 1, ... and k=0, 1, ..., 2 j&1 there exists m # Z such
that G� j (2

jm+k){0;

G3. for all k # Z there exists j # [0, 1, ...] such that G� j (k){0;

G4. for each j=0, 1, ... and k # Z there exists * j
k {0 such that

G� j (2
jm+k)=* j

kG� j+1(2 j+1m+2k) for all m # Z;

G5. for each j=0, 1, ... and k # Z there exists $ j
k # R such that

G� j (2
j+1m+k)=$ j

k G� j+1(2 j+1m+k) for all m # Z.

In particular, this theorem implies that a scaling sequence exists in each
PMRA. It is clear that for each scaling function . the collection of sets Vj

defined by (6) is a PMRA in the sense of Definition 4.1 and the functions
8j0 defined by (5) constitute a scaling sequence for this PMRA.

Let us consider pairs of PMRA with the first component [Vj]�
j=0 in Lp ,

1�p<� and the second one [V� j]�
j=0 in Lq , 1�p+1�q=1 (C for p=1)

and call them ( p, q)-pairs of PMRA.

Proposition 4.3. If ([Vj]�
j=0 , [V� j]�

j=0 ) is a ( p, q)-pair of PMRA and
[Gj]�

j=0 and [G� j]�
j=0 are scaling sequences for [Vj]�

j=0 and [V� j]�
j=0 ,

respectively, then the shift bases [S n
j Gj]2 j&1

n=0 in Vj and [S n
j G� j]2 j&1

n=0 in V� j are
bi-orthonormal if and only if

(| j
nGj , | j

n G� j )=2& j. (52)

Let ([Gj]�
j=0 , [G� j]�

j=0) be scaling sequences of a ( p, q)-pair of PMRA
([Vj]�

j=0 ,[V� j]�
j=0) and let Hj , H� j , j=0, 1, ... be 1-periodic functions with

the Fourier coefficients H� j (r), H�� j (r), r # Z, respectively, defined by

H� j (r)=e?i2&j r$� j
2 j+rG� j+1(r), H�� j (r)=e?i2&j r$ j

2 j+rG�� j+1(r),

where $ j
k , $� j

k are the factors from Theorem 4.2 for the sequences [Gj]�
j=0 ,

[G� j]�
j=0 , respectively. The functions Hj , H� j are called wavelet functions and

the spaces

Wj=span[S n
j Hj , n=0, ..., 2 j&1],

W� j=span[S n
j H� j , n=0, ..., 2 j&1]

are called wavelet spaces of the ( p, q)-pair ([Vj]�
j=0 , [V� j]�

j=0).

319WAVELET APPROXIMATION



Theorem 4.4. Let ([Vj]�
j=0 , [V� j]�

j=0) be a ( p, q)-pair of PMRA, and
let [Gj]�

j=0 , [G� j]�
j=0 be their scaling sequences, [Hj]�

j=0 , [H� j]�
j=0 are

corresponding wavelet function sequences, Wj , j=0, 1, ... are wavelet spaces.
If (52) holds, then

H1. Wj /Vj+1 ;

H2. each function f # Vj , j=1, 2, ... can be represented in the form
f =f1+ f2 , where f1 # Vj&1 , f2 # Wj&1 ;

H3. (S n1
j1

Hj1
, S n2

j2
H� j2

)=0 for all j1 , j2=0, 1, ..., j1 { j2 , n1=0, ..., 2 j1&1,
n2=0, ...2 j2&1;

H4. (S n1
j Hj , S n2

j H� j )=$n1 , n2
for all j=0, 1, ..., n1 , n2=0, ..., 2 j&1.

Next we fix a ( p, q)-pair ([Vj]�
j=0 , [V� j]�

j=0) satisfying the hypothesis
of Theorem 4.4. For each f # Lp we can consider the following wavelet
expansion:

( f, G� 0 ) G0+ :
�

j=0

:
2 j&1

n=0

( f, S n
j H� j ) , S n

j H j . (53)

This double series can be transformed to a single one as was done for (7).
Let sN denote the partial sum of this single series. Notice that, due to
Theorem 4.4,

s2 j&1( f )= :
2 j&1

n=0

( f, S n
j G� j) S n

j Gj . (54)

Theorem 4.5. Let f # L:(x0), :>0. If for all x # [&1�2, 1�2]

|Gj (x)|�C
2 j(1&})

1+(2 j |x| )m , |G� j (x)|�C
2 j}

1+(2 j |x| )m , m>1, (55)

then

s2 j&1( f, x0)&s=O(2& j min[:, m&1]), j � �, (56)

if :{m&1,

s2 j&1( f, x0)&s=O( j2& j:), j � �, (57)

if :=m&1. If, moreover, for all x # [&1�2, 1�2]

|Hj (x)|�C
2 j(1&*)

1+(2 j |x| )n , |H� j (x)|�C
2 j*

1+(2 j |x| )n , n>1, (58)
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then

sN( f, x0)&s=O(N&min[:, n&1]), N � �, (59)

if :{n&1;

sN( f, x0)&s=O(N&: log N), N � �, (60)

if :=n&1.

Proof. Consider the case :{n&1, :{m&1. First we note that, by
(55), (58), the functions G� j , H� j are bounded. Hence the sums sN( f ) can be
considered for each f # L(T). By Theorems 4.2 and 4.4, sN(h)=h for all
h#const and all N=0, 1... . Then

s2 j&1( f, x0)&s=|
1

0
( f (t)&s) :

2 j&1

k=0

S k
j Gj (x0) S k

j G� j (t) dt. (61)

The functions S k
j Gj , S k

j G� j can be represented in the form

S k
j Gj= :

l # Z

gj (2 jx+2 jl+k), S k
j G� j= :

l # Z

g~ j (2 jx+2 jl+k),

where

gj (t)={G j (2
& jt),

0,
if t # [&2 j&1, 2 j&1],
otherwise,

g~ j (t)={G� j (2
&j t),

0,
if t # [&2 j&1, 2 j&1],
otherwise.

Then, by (55),

| gj (t)|�C
2 j(1&})

1+|t|m , | g~ j (t)|�C
2 j}

1+|t|m .

Hence applying Lemmas 2.2 and 2.3 to (61), we have

|s2 j&1( f, x0)&s|�2 j |
�

&�
| f (t)&s| +(2 j (t&x0)) dt,

where +(u)=C�(1+|u|m). The right-hand side in this inequality is the same
as it was in (32). Hence to prove (56), it remains to repeat the arguments
of the proof of Theorem 3.1 based on (32). Now we assume that (58) holds.
By (56), the sums s2 j&1( f, x0) converge to s as j � �. On the basis of this
and (16), for (56) it suffices to prove that

s2 j&1( f, x0)&s2 j+L( f, x0)=O(2& j min[:, n&1])
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for all j=0, 1, ..., L=0, 1, ..., 2 j&1. By Theorem 4.4,

|
1

0
S k

j H� j=|
1

0
G0S k

j H� j=0

for all j=0, 1, ..., k=0, ..., 2 j&1. This implies that

s2 j&1( f, x0)&s2 j+L( f, x0)=|
1

0
( f (t)&s) :

L

k=0

S k
j Hj (x0) S k

j H� j (t) dt.

Similarly to the proof of (56) we can conclude from this that

|s2 j&1( f, x0)&s2 j+L( f, x0)|�2 j |
�

&�
| f (t)&s| +(2 j (t&x0)) dt,

where +(u)=C�(1+|u|n). Again it remains to repeat the arguments used
for Theorem 3.1. The cases :=n&1, :=m&1 are similar. K

The assumption m>1 in (55) cannot be relaxed. Moreover, if we con-
sider this assumption separately for the first and the second PMRA with
m1 and m2 , respectively, then neither m1>1 nor m2>1 can be relaxed. Let
([Vj]�

j=0 , [V� j]�
j=0) be the pair of PMRA defined as follows. The second

component [V� j]�
j=0 is a PMRA generated by the scaling function . defined

by (42). The functions

G� j (x)= :
l # Z

.(2 jx+2 j l)=2& j :
k # Z

.̂(2& jk) e2?ikx, j=0, 1, ...

constitute a scaling sequence in [V� j]�
j=0 . We define the space Vj as the

linear span of the functions S n
j Gj , where

Gj (x)= :$
2 j&1

k=&2 j&1

(.̂(2& jk))&1 e2?ikx.2

It is clear that [V j]
�
j=0 is a PMRA and [Gj]�

j=0 is a scaling sequence of
this PMRA. Orthonormal wavelet system of this PMRA was investigated
in [2]. Since for each j=0, 1, ... the sequences S k

j Gj , S k
j G� j satisfy (52), they

are bi-orthonormal and the corresponding wavelet systems S k
j Hj , S k

j H� j are
bi-orthonormal too, due to Theorem 4.4. The functions Gj , G� j are, evidently,
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in L�(T). Hence for any f # L(T) we can consider both the wavelet expan-
sions, (53) and

( f, G0) G� 0+ :
�

i=0

:
2 j&1

n=0

( f, S n
j Hj) S n

j H� j . (62)

Let s~ N( f ) denote the N th partial sum of this series. Since . is compactly
supported, (55) holds for G� j with any m>1. It is not difficult to check that

|Gj ( y)|�
1+C 2 j

2 j | y|
.

Thus, (55) holds for Gj with m=1, }=0. It is possible to prove that for
an arbitrary #(u)=o(1), u � � there exist functions f1 , f2 # L(T) supported
on [1�4, 1�2] such that

#&1(2 j ) s2 j&1 ( f1 , 0) ww�
j � �

�,

#&1(2 j ) s~ 2 j&1( f2 , 0) ww�
j � �

�.

On the other hand, the series in (53), (62) converge to zero for each
f # L:(0), :>0.

5. DISCRETE WAVELET FOURIER TRANSFORM

In this section we consider wavelets generated by a compactly supported
scaling function. Such wavelets are very important for various applications,
in particular for the reconstruction of functions. There exists a fast scheme
for the computation of the wavelet Fourier coefficients of a reconstructed
function (subband filtering scheme). The algorithm is based on the following
arguments. Due to (2), (3), the coefficients of the j th level (corresponding
to the basis elements of the spaces Vj , Wj) can be expressed by the coef-
ficients of the ( j&1)th level. This allows recursive formulas to be obtained.
The smaller the support of a scaling function, the faster is the process of the
computation by these formulas. However, recursive processes accumulate
errors from level to level. Thus, for large j computations can give wrong
results. We propose an alternative algorithm for the reconstruction of func-
tions based on wavelet expansions. The idea is to replace wavelet Fourier
coefficients by their discrete analogs, which can be computed without any
recursion. In other words, we are going to introduce a wavelet analog of
DFT (the discrete Fourier transform for the trigonometric system). It is
well known that for a smooth function its DFT is close to the correspond-
ing Fourier coefficient, but the former is more preferable for numerical
problems.
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Further we fix a PMRA [Vj]�
j=0 generated by a scaling function . such

that supp . # [&R, R]. Set

Kj (x, y)= :
2 j&1

l=0

8jl(x) 8jl( y),

where 8jl are functions defined by (5).

Theorem 5.1. For each j=0, 1, ... there exist yks # [0, 1], k=0, ...,
2 j&1, s=1, ..., M, where M depends only on R, and constants :1 , ..., :M

such that for all f # Vj and all x # [0, 1]

f (x)=2& j :
2 j&1

k=0

:
M

s=1

:s f ( yks) Kj (x, yks). (63)

Our proof of this theorem is based on the following auxiliary statements.

Lemma 5.2. For all f1 , ..., fN # L[0, 1], there exist y1 , ..., yM # [0, 1]
and :1 , ..., :M # R, M�N, such that

:
M

i=1

:i f j ( yi)=|
1

0
f j , j=1 } } } N. (64)

Proof. If there exist y1 , ..., yN # [0, 1] such that det[ fj ( yi)]N
i, j=1 {0,

then :1 , ..., :N can be found as a solution of the linear system (64). Other-
wise, the dimension of the space of the vectors r( y)=( f1( y), ..., fN( y)),
y # [0, 1] is equal to M<N. Thus, there exist y1 , ..., yM # [0, 1] and
k1 , ..., kM # [1, ..., N] such that det[ fkj

( yi)]M
i, j=1 {0, fkl

( yi)=�M
j=1_

;lj fkj
( y i), i=1, ..., M, l=M+1, ..., N. Let :1 , ..., :M be a solution of the

system

:
M

i=1

:i fkj
( yi)=|

1

0
fkj

, j=1 } } } M.

Since the vectors r( yi), i=1, ..., M, constitute a basis, for each y # [0, 1]
there exist numbers *j ( y) such that fj ( y)=�M

i=1 *i ( y) fj ( y i), j=1, ..., N.
Hence, for all l>M we have

|
1

0
fkl

( y) dy=|
1

0
:
M

i=1

*i ( y) fkl
( y i) dy=|

1

0
:
M

i=1

* i ( y) :
M

j=1

;lj fkj
( yi) dy

= :
M

j=1

;lj |
1

0
fkj

( y) dy= :
M

i=1

:i :
M

j=1

;lj fkj
( y i)= :

M

i=1

:i fkl
( yi). K
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Lemma 5.3. Let j be a positive integer, x, t # [0, 1], yk=2& j (t+k),
k=0, ..., 2 j&1. Then

2& j :
2 j&1

k=0

|Kj (x, yk)|�C.

Proof. Since . is compactly supported, for all j large enough

2& j :
2 j&1

k=0

|Kj (x, yk)|

� :
2 j&1

k=0

:
2 j&1

n=0

:
l1 # Z

|.(2 jx+2 jl1+n)| :
l # Z

|.(2 jyk+2 jl+n)|

� :
2 j&1

k=0

:
2 j&1

n=0

:
l1 # Z

|.(2 jx+2 jl1+n)| :
l # Z

|.(t+k+2 jl1+n+2 j l)|

� :
l # Z

:
2 j&1

k=0

:
n # Z

|.(2 jx+n) .(t+k+n+2 jl)|

� :
2 j&1

k=0

:
n # Z

|.(2 jx+n) .(t+k+n)|.

It remains to note that, by Lemma 2.3,

:
2 j&1

k=0

:
n # Z

|.(2 jx+n) .(t+k+n)|�C :
k # Z

+ \2 j x&t&k
4 +�C :

k # Z

+(k),

where + is an even compactly supported majorant of . decreasing on
[0, �]. K

Proof of Theorem 5.1. Consider the functions h&+(t)=.(t+&) .(t++),
&, + # Z defined on [0, 1]. Since h&+ �0 only if &1&R�&, +�R, by
Lemma 5.2, there exist ts # [0, 1], :s # R, s=1, ..., M, such that

:
M

s=1

:s h&+(ts)=|
1

0
h&+ (65)

for all +, & # Z. Let S denote the right-hand side of (63) with yks=
2& j (k+ts). Since both f and S are elements of the space Vj , it suffices to
prove that

|
1

0
f8jn =|

1

0
S8 jn (66)
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for all j=0, 1, ..., n=0, ..., 2 j&1. If an=�1
0 f8 jn , then f =�2 j&1

n=0 an8jn and

|
1

0
S8jn=2& j :

2 j&1

m=0

am :
2 j&1

k=0

:
M

s=1

:s :
2 j&1

r=0

8 jm( yks) 8jr( yks) |
1

0
8 jn8jr

=2& j :
2 j&1

m=0

am :
2 j&1

k=0

:
M

s=1

:s8 jm( yks) 8jn( yks)= :
2 j&1

m=0

am Anm .

Next, by (65),

Anm= :
M

s=1

:s :
2 j&1

k=0

:
l1 # Z

.(ts+2 j l1+k+m) :
l # Z

.(ts+2 j l+k+n)

= :
M

s=1

:s :
l # Z

:
k # Z

.(ts+k) .(ts+2 j l+k+n&m)

= :
k # Z

:
l # Z

|
1

0
.(t+k) .(t+k+2 j l+(n&m)) dt

= :
l # Z

|
�

&�
.(t) .(t+2 j l+(n&m)) dt.

Since [.(t+&)]& # Z is an orthonormal system on R, Anm does not vanish
only for n=m, and Ann=1. Hence �m # Z amAnm=an . This yields Theorem 5.1.

K

Corollary 5.4. If f, g # Vj , then

( f, g) =2& j :
2 j&1

k=0

:
M

s=1

:s f ( yks) g( yks). (67)

Proof. Equality (67) follows immediately from (63) if we take into
account that

|
1

0
g(t) Kj (t, y) dt= g( y). K

We now consider an arbitrary 1-periodic function f defined at each point.
Set

_j ( f, x)=2& j :
2 j&1

k=0

:
M

s=1

:s f ( yks) K j (x, yks).

Theorem 5.5. If f # C, then

& f&_j ( f )&��CE2 j ( f )� , (68)
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Proof. Let g be an element of best approximation in Vj to f. Since, due
to (63), _j (g, x)= g, we easily obtain (68) from Lemma 51. K

This theorem, together with Theorem 2.1, shows that _j ( f ) is a good
tool of approximation for smooth functions. (67) implies that _j ( f ) can be
represented as the wavelet expansion

_j ( f )= :
2 j&1

n=0

cn( f ) wn ,

where

cn( f )=2& j :
2 j&1

k=0

:
M

s=1

:s f ( yks) wn( yks), n=0, ..., 2 j&1.

A coefficient cn( f ) will be called a discrete wavelet Fourier transform
(DWFT) of f.

Theorem 5.6. If f # C, j=0, 1, ..., l=0, ..., j&1, r=0, ..., 2l&1,
n=2l+r, then

|cn( f )&( f, wn) |�C2&l�2E2 j ( f )� . (69)

Proof. Let g be an element of best approximation in Vj to f. By (67),
cn(g)=( g, wn) . Hence

|cn( f )&( f, wn) |�|cn( f &g)&( f &g, wn) |

�E2 j ( f )� \2& j :
2 j&1

k=0

:
M

s=1

|:s | |wn( yks)|+|
1

0
|wn |+ .

Since wn( yks)=�1
0 wn(t) Kj (t, yks) dt, due to Lemma 5.3,

|cn( f )&( f, wn) |�CE2 j ( f )� |
1

0
|wn |. (70)

By the definition of wn ,

|
1

0
|wn(t)| dt�2l�2 |

1

0
:

m # Z

|�(2lt+2lm+r)| dt=2&l�2 |
�

&�
|�(t)| dt.

Combining this with (70), we obtain (69). K

We see that the wavelet Fourier coefficients of a smooth function can
be replaced by DWFTs in problems of reconstruction of functions and
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compression of information. The algorithm of computation is very simple,
DWFT can be computed just by the definition. Finding the numbers :s and
the nodes yks is not difficult in practice. We can take arbitrary points
t1 , ..., tM # [0, 1] with M=2([R]+1)2 and check if the determinant of the
system (66) does not vanish. If these points are not suitable, we can try to
succeed with other ones. Let us estimate complexity of this algorithm.
Suppose the values :s , wn( yks) are known and count the number of opera-
tions that we need to compute all the coefficients cn( f ), n=0, ..., 2 j&1. Set
n=2l+r, l< j, r=0, ..., 2l&1, 2l>4R. Since . is supported on [&R, R],
the wavelet function � is supported on [&2R, 2R] (see [3, Chap. 5]). Hence
wn(x){0 only in the following cases:

(a) r<2R, 0�x�2&l(2R&r), 1&2&l(2R+r)�x�1;

(b) 2R�r�2l&2R, 1&2&l(2R+r)�x�1&2&l(r&2R);

(c) r�2l&2R, 0�x�1&2&l(r&2R), 2&2&l(2R+r)�x�1.

So, only 4R2&l terms of the sum �2 j&1
k=0 wn( yks) f ( yks) do not vanish.

Therefore, to compute cn( f ) we should make at most 8RM2 j&l operations.
This implies that the complexity of the whole algorithm does not exceed
8RM(1+ j) 2 j.
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